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We investigate the maximal non-critical cluster in a big box in various percolation-type
models. We investigate its typical size, and the fluctuations around this typical size. The
limit law of these fluctuations is related to maxima of independent random variables
with law described by a single cluster.
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1. INTRODUCTION AND MAIN RESULTS

In ref. (5), Bazant studies the distribution of maximal subcritical clusters, both
numerically and via a non-rigorous renormalization group argument. He finds that
the cardinality of maximal clusters behaves like the maximum of independent
geometrically distributed random variables, i.e., a “Gumbel-like” distribution. In
ref. (5), the role of the FKG inequality, which implies that clusters “repel each
other”, is emphasized in a subadditivity argument.

In this paper, we rigourously investigate these claims for a broad class of
non-critical percolation type models. In the FKG context, we obtain a bound in
terms of discrete Gumbel laws for maximal subcritical clusters. In a more general
context, we can deal with dependent percolation models dominated by subcritical
Bernoulli percolation. In the supercritical case we also obtain Gumbel laws under
some extra assumption, which is satisfied e.g. for site percolation in d ≥ 2.

The key ingredient of the proof of the Gumbel law is the exponential law for
the occurrence time of rare patterns. This idea is used by Wyner in ref. (23) in the
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context of matching two random sequences. If a cluster bigger than un appears
in a box [−n, n]d ∩ Z

d of volume (2n + 1)d , then evidently the occurrence time
tun of such a cluster is less than (2n + 1)d . Therefore, if tun has approximately
an exponential distribution, then the probability of having a cluster larger than un

is approximately 1 − e−(2n+1)d
P(Cun ), where Cun denotes the event that the cluster

of the origin has cardinality at least un . If one can find a scale un = un(x) such
that P(Cun (x)) � e−x/(2n + 1)d , then one obtains the Gumbel law. Assuming an
exponential decay of the cluster cardinality, as expected for subcritical percolation,
one obtains un(x) = un + x , where un = c log n(1 + o(1)). For finite supercritical
clusters, under the assumption that the cluster size has Weibull-tails, i.e., decays as a
stretch exponential with exponent δ < 1, we have un(x) = (c log n + c′ log log n +
x)1/δ .

1.1. The Model

We consider site percolation and related models on the lattice Z
d . A configu-

ration of occupied and vacant sites is an element ω ∈ � = {0, 1}Z
d
. A site x with

ω(x) = 1 is called occupied, and a site with ω(x) = 0 is called vacant.
The configuration ω will be distributed according to a translation invari-

ant probability measure P on the Borel-σ -field of �. Examples of P include
the Bernoulli product measure Pp with Pp(ω(x) = 1) = p, but we also consider
dependent random fields, such as the Ising model, below.

A set A ⊆ Z
d is connected if for any x, y ∈ A there is a nearest-neighbor

path γ joining x and y. The cluster C(x) = C(x, ω) of an occupied site x is the
largest connected subset of occupied sites to which x belongs. By convention,
C(x) = ∅ if ω(x) = 0. We also need the cluster Cle(x) defined as follows

Cle(x) = C(x) if x is the left endpoint of C(x), (1.1)

∅ otherwise. (1.2)

Here, by the left-endpoint of a finite set A ⊆ Z
d , we mean the minimum of A in

the lexicographic order. By definition Cle(x) ∩ Cle(y) = ∅ if x 	= y. In this paper,
we work with site percolation. In the percolation community, it is more usual to
consider bond percolation (see e.g., ref. (19)). However, site percolation is more
general than bond percolation, as shown e.g. in [Section 1.6].(19) We use results
from ref. (19) proved for bond percolation, but in general these results also hold for
site percolation (as noted in [Section 12.1])(19).

Percolation has a phase transition, i.e., for d ≥ 2, there exists a critical value
pc ∈ (0, 1) such that there exists an infinite cluster a.s. for p > pc, while no such
cluster exists a.s. for p < pc. The goal of this paper is to investigate maximal
clusters in a finite box for p 	= pc.
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1.2. Main Results for Site Percolation

In this section, we describe our results in the simplest case, namely for site
percolation, where all vertices are independently occupied with probability p
and vacant with probability 1 − p. In Section 3, we formulate our results in a
more general context of possibly dependent percolation, and under weaker a priori
conditions on the cluster tail behavior.

We study the maximal cluster inside a big box. To be able to state our result,
we need some further notation. Let Bn = [−n, n]d ∩ Z

d be the cube of width
2n + 1. We let

ωBn (x) =
{

ω(x) if x ∈ Bn,

0 otherwise,
(1.3)

and

Mn = Mn(ω) = max
x

∣∣Cle
(
x, ωBn

)∣∣. (1.4)

The random variable Mn is the maximal cluster inside Bn , with zero boundary
conditions, i.e., where we do not consider connections outside Bn . The goal of this
paper is to obtain an extreme value theorem such as

P (Mn ≤ un + x) = e−ane−x + o(1) (1.5)

for some un ↑ ∞, and where an is a bounded sequence uniformly bounded from
below. In words, this means that the distribution of the maximal cluster is “Gumbel-
like”, i.e., looks like the maximum of independent geometric random variables.
We will prove (1.5) in the case of subcritical percolation and related models. For
supercritical percolation, the results are different, in the sense that un + x in (1.5)
should be replaced with another sequence. The presence of the bounded sequence
an in (1.5) is typical for the law of the maximum of independent geometric random
variables, where we do not have an exact limiting extreme value distribution (see
e.g. Corollary 2.4.1) (16). We now explain the basic idea in this paper, which applies
both to sub- and supercritical percolation, in more detail.

The idea developed in this paper is that for any non-critical p, the law of
Mn is asymptotically equal to the law of the maximum of (2n + 1)d independent
copies of a random variable X with law

P(X = n) = 1

n
P(|C(0)| = n), (1.6)

for n ≥ 1, and

P(X = 0) = 1 − E(|C(0)|−1). (1.7)

The law of X in (1.6–1.7) turns out to be equal to the law of the random variable
|Cle(0)| (see Lemma 4.1 below). Therefore, the law of Mn is equal to the law of
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maxx |C(x, ωBn )|, and thus the philosophy of the paper is to show that the clusters
are only weakly dependent. We further use properties of the law of C(0) to derive
the asymptotics of Mn in more detail.

We note that the cluster size distribution plays an essential part throughout
the proof. We now state the results on this cluster size distribution which we need,
in order to specialize the results. Since this law is crucially different for p < pc

and p > pc, we distinguish these two cases.
For p < pc, it is shown in (Theorem 6.78)(19) that

ζ (p, d) = lim
n→∞ −1

n
log Pp(|C(0)| ≥ n) (1.8)

exists, and that ζ = ζ (p, d) > 0 for all p < pc. Moreover, there exists C = C(p)
such that

Pp(|C(0)| = n) ≤ Cne−ζn . (1.9)

The above results imply that the cluster size distribution has exponential tails,
similarly to geometric random variables. For i.i.d. geometric random variables, a
law as in (1.5) holds, and we now state similar results for the maximal subcritical
percolation cluster.

We sometimes work under the assumption that a somewhat stronger version
of (1.8) holds, namely that

lim
n→∞

Pp(|C(0)| ≥ n + 1)

Pp(|C(0)| ≥ n)
= e−ζ . (1.10)

Assumption (1.10) is stronger than (1.8), but weaker than the widely believed
tail-behavior, namely that there exist θ = θ (d) ∈ R and A = A(p, d) such that

Pp(|C(0)| ≥ n) = Anθe−ζn[1 + o(1)]. (1.11)

Our main result for p < pc is the following theorem:

Theorem 1.1. Fix p < pc and assume that (1.10) holds. Then there exists a
sequence un ∈ N, with un → ∞, a real number a > 0 and a bounded sequence
an ∈ [a, 1], such that for all x ∈ N

P(Mn ≤ un + x) = e−ane−xζ + o(1). (1.12)

The more general version of this theorem is stated in Section 3, Theorem
3.6. In this theorem, upper and lower bounds are proved for P(Mn ≤ un + x)
without assuming (1.10). Theorem 1.1, and also Theorem 3.6 below, shows that
Mn is bounded above and below by Gumbel laws, and shows in particular that the
sequenceMn − un is tight. Our proof will reveal that Theorem 1.1 can be extended
to yield weak convergence along certain exponentially growing sequences.
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The statement of our main result in terms of the sequence an is necessary, and,
for instance, is also present when dealing with the maximum of n i.i.d. geometric
random variables. The problem we are facing is that the fluctuations are uniformly
bounded, while we also know that Mn is an integer, while we should think of un

as being something like un = � log n
ζ

� (see e.g., Proposition 4.8 below). Thus, we

can think of an as describing how far log n
ζ

is from an integer.
We now go to supercritical results, for which the cluster size distribution has

quite different tails. Since pc(1) = 1, we may assume that we are in dimension
d > 1. When p > pc, then it is known that the limit

η(p, d) = lim
n→∞ − 1

n
d−1

d

log Pp(n ≤ |C(0)| < ∞) (1.13)

exists. The limit in (1.13) is related to the large deviations of large finite supercrit-
ical clusters, and can be written explicitly as a variational problem over possible
cluster shapes. This variational problem involves the surface tension, and is max-
imized by the so-called Wulff shape. The result in d = 2 is in ref. (3,9), for d = 3,
it is in ref. (10), and for d ≥ 4, it is in ref. (11).

We again formulate a different version of (1.13), namely that for every x ≥ 0,
we have

lim
n→∞ Pp(|C(0)| ≥ n + xn1/d |n ≤ |C(0)| < ∞) = e−xη d−1

d , (1.14)

and change the definition of Mn slightly to

Mn = Mn(ω) = max
x :|C(x)|<∞

|Cle(x, ωBn )|, (1.15)

i.e., we take the largest finite cluster. Of course, for p < pc, (1.4) and (1.15)
coincide.

Then we can prove the following scaling property:

Theorem 1.2. Fix p > pc and assume that (1.14) holds. Then there exists a
sequence un → ∞ such that for all x ∈ R

lim
n→∞ P

(
Mn ≤ un + xu1/d

n

) = e−e−xη d−1
d

. (1.16)

Theorem 1.2 is equivalent to the statement that Mn−un

u1/d
n

converges in dis-

tribution to a Gumbel random variable. The same statement is true when we
consider the maximum of n i.i.d. random variables Yi for which the tail is given

by P(Y ≥ n) = e−ηn
d−1

d (1+o(1)).
Theorems 1.1 and 1.2 study fluctuations of Mn around their asymptotic

mean under the Assumptions (1.10) and (1.14). The main difference between
Theorems 1.1 and 1.2 is that Theorem 1.2 implies weak convergence of the
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rescaled Mn since the fluctuations grow with n, whereas in Theorem 1.1 this
weak convergence does not hold due to the fact that the fluctuations are of order 1,
so that the discrete nature of cluster sizes persists.

In Section 3 below, we will formulate a more general result that corresponds
to Theorem 1.2 and holds without assumptions (1.13) and (1.14), but takes a form
which is less elegant. It is not so hard to see that one can choose

un = O(log n) (1.17)

for p < pc, while

un = O
(

(log n)
d

d−1

)
(1.18)

when p > pc. From Theorems 1.1 and 1.2 it immediately follows that Mn divided
by log n for p < pc, respectively, (log n)

d
d−1 for p > pc, converges in probability

to a constant. In the next theorems, we will investigate the typical size of Mn

in more detail and prove convergence almost surely without the assumptions of
(1.10) and (1.14), respectively.

Theorem 1.3. For p < pc,

Mn

log n
→ dζ (p, d) a.s. (1.19)

Theorem 1.4. For p > pc,

Mn

(log n)
d

d−1

→ d
d−1

d η(p, d) a.s. (1.20)

These results appear to be “folklore”, but we did not find an appropriate
reference where they are stated and proved.

We close this section with a few observations concerning the role of the
boundary conditions. In (1.4), we have taken the maximal cluster under the zero
boundary condition, so that we can write Mn = M(zb)

n . Alternatively, we could
have defined Mn under free boundary conditions, i.e.,

M(fb)
n = max

x∈Bn :|C(x)|<∞
|C(x, ω)|, (1.21)

or under periodic boundary conditions, i.e.,

M(pb)
n = max

x∈Bn

∣∣C(
x, ω′

Bn

)∣∣, (1.22)

where ω′
Bn

is the site percolation configuration on the torus with vertex set Bn . We
will finally show that this makes no difference whatsoever:
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Theorem 1.5. For p < pc,

Pp

(
M(zb)

n 	= M(fb)
n

) = o(1), Pp

(
M(zb)

n 	= M(pb)
n

) = o(1). (1.23)

For p > pc,

Pp

(
M(zb)

n 	= M(fb)
n

) = o(1). (1.24)

Theorem 1.5 immediately shows that all results proved for M(zb)
n immediately

also apply to M(fb)
n and M(pb)

n for p < pc and to M(fb)
n for p > pc, i.e., that the

boundary condition is irrelevant. For p > pc, M(pb)
n is more difficult to work with

since it is harder to ‘exclude’ the infinite cluster on the torus without looking
outside the torus.

1.3. Discussion of the Results

1.3.1. Runs and one-dimensional site percolation

In the case where d = 1, it easily follows that for any p < pc = 1,

P(|Cle(0)| ≥ n) = pn. (1.25)

In this simple case, the largest cluster is equal to the longest run of ones in n
independent tosses. This is a classical problem, and the leading order asymptotics
Mn = − log n/ log p(1 + o(1)) is the celebrated Erdös-Rényi law.(15) Our results
study fluctuations around the Erdös-Rényi law. This problem has attracted con-
siderable attention due to its relation to matching problems arising in sequence
alignment (see e.g., ref. (21) and the references therein).

1.3.2. Results for general subcritical FKG models
and related Gumbel laws

Our results for subcritical clusters hold more generally than just for inde-
pendent site percolation. The main technical ingredient in the proof are the FKG-
inequality and bounds on the tails of the cluster size distribution. In Section 3
below, we will state a general result, that can be proved for site percolation and
applied in the context of the following examples.

1. The two-dimensional Ising model at β < βc.
2. The Ising model in general dimension, at high temperature and/or high

enough magnetic field (see ref. (18)).
3. Gibbs measures where the potential has a sufficiently small Dobrushin

norm and a sufficiently high magnetic field.

See ref. (18) for an introduction of the Ising model and Section 3 for more
details.
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We expect that related results hold for other maximal values of cluster charac-
teristics. Examples are the maximal diameter of a supercritical finite cluster, or the
maximal occupied line (i.e., a sequence of bonds) with any orientation for p < 1.
We also expect that our results for maximal finite supercritical clusters continue to
hold in the context of the Ising model in dimensions d = 2, 3 for β > βc, where
the Wulff crystal has been identified (see e.g., refs. (6,13)), and hence the exact
behavior of the cluster tail is known.

1.3.3. Maximal clusters for critical percolation

Our results are only valid for non-critical percolation. In critical percolation,
the behavior of the largest cluster in a box should be entirely different. Firstly,
the scaling of the largest cluster in a box should be polynomial in the volume
of the box, rather then polylogarithmic as in Corollaries 1.3 and 1.4. Secondly,
when properly rescaled, the size of the largest cluster should converge to a proper
random variable, rather than to a constant as in Corollaries 1.3 and 1.4. Thirdly, we
expect that in some cases, the size of the largest cluster depends on the boundary
conditions, which is not true off the critical point (see Theorem 1.5).

There have been results in the direction of the above claims. In ref. (8),
the largest critical cluster in a box was investigated and, under certain scaling
assumptions, it was proved that the largest cluster with zero boundary conditions
scales like n

dδ
δ+1 , where δ is the critical exponent related to the critical cluster

distribution

1

δ
= lim

n→∞ − log Ppc (|C(0)| ≥ n)

log n
. (1.26)

Of course, it is not obvious that this limit exists. The scaling assumptions are not
expected to be true above the critical dimension dc = 6.

1.3.4. Relation to random graphs

There is a wealth of related work for random graphs, which are finite graphs
where edges are removed independently. This research topic was started by a
seminal paper ofw Erdös-Rényi(14) which created the field of random graphs.
Erdös-Rényi and Rényi investigate what is called the random graph, i.e., the
complete graph where edges are kept independently with fixed probability p and
removed otherwise. See the books ref. (4,7,20) and the references therein.

When dealing with random graphs, it is natural to investigate the largest
connected component or cluster when the size of the graph tends to infinity.
Therefore, results such as the ones presented in Section 1.2 have appeared in this
field. In particular, detailed estimates of large subcritical and supercritical cluster
have been obtained. Of course, for finite graphs, it is already non-trivial to define
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what a critical value is. Above the critical value, the largest cluster has a size of
order of the size of the graph, while below the critical value, the largest cluster is
logarithmic in the size of the graph.

In random graph theory, often there is a discrete duality principle, which
means that when we remove the largest supercritical cluster, then the size and
distribution of the remaining clusters is very much alike the size and distribution
of subcritical clusters. See e.g. (Section 10.4)(4) for an explanation of this principle
for branching processes as well as for the random graph. We note that this principle
is false for site percolation on Z

d , as Theorems 1.3 and 1.4 show. This distinction
arises from the fact that the classical random graph has no geometry, whereas the
geometry is essential in the description of large finite supercritical clusters and
appears prominently in the Wulff shape.

1.3.5. Organization

Our paper is organized as follows. In Section 2, we give heuristics for our
results. In Section 3, we state our general results for FKG models under certain
conditions. Section 4 is devoted to the proofs of the main results.

2. EXTREMES AND RARE EVENTS: HEURISTICS

We are interested in the cardinality of maximal clusters inside a big box.
Recall that Bn = [−n, n]d ∩ Z

d . For n ∈ N, define the σ -fieldFn = FBn . A pattern
An is a configuration with support on Bn , i.e., it is an element of {0, 1}Bn . We
identify a pattern with its cylinder, i.e., we also denote An to be the set of those ω

such that ωBn = An . For a pattern An , we define its occurrence time to be

tAn (ω) = min{|Bk | : ∃x ∈ Bk such that Bn + x ⊂ Bk and θxωBn = An}, (2.1)

where θxω denotes the configuration ω shifted over x , so that (θxω)(y) = ω(x + y).
In words, this is the volume of the minimal cube Bk which “contains” the pattern
An . One expects that tAn is of the order P(An)−1. For a measurable event En , we
write En ∈ Fn where, by convention, we always choose the minimal n such that
this is the case. For En ∈ Fn , there exists a unique set of patterns A(En) such that

En =
⋃

An∈A(En )

An

The occurrence time of En is then defined as

tEn (ω) = min
An∈A(En )

tAn (2.2)

In words, En is a set of patterns, and the occurrence time of En is the volume
of the first cube Bk in which some pattern of En can be found. A sequence of
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Fn-measurable events En is called a sequence of rare events if P(En) → 0 as
n → ∞. For sequences of rare events, one typically expects so-called exponential
laws, i.e., limit theorems of the type

P

(
tEn ≥ t

P(En)

)
= e−λEn t + o(1). (2.3)

Equation (2.3) has been proved for “high temperature Gibbsian random fields”
and the parameter λEn is bounded away from zero and infinity. In the case of
patterns, the parameter depends on the self-repetitive structure of the pattern.
For so-called good (meaning that there can be no fast returns) patterns, we even
have that λEn = 1. In ref. (2) the exponential law for patterns is generalized to
measurable events En ∈ Fn , provided a second moment condition is satisfied.
This second moment condition ensures that 1/P(En) is the right time scale for the
occurrence time, i.e., the parameter λEn is bounded away from zero and infinity (see
Theorem 3.5 below for the precise formulation).

The relation between maxima and rare events is intuitively obvious: if a
cluster with cardinality bigger than m appears in a cube Bn , then the occurrence
time for the appearance of a cluster bigger than m is not larger than |Bn|. More
precisely, throughout the paper, we will work with the event

En = {n ≤ |Cle(0)| < ∞} (2.4)

and define the random variable τEm with values in {(2n + 1)d : n ∈ N} by{
τEm ≤ (2n + 1)d

} = {∃x ∈ Bn : θxωBn ∈ Em

}
(2.5)

The random variable τEm is not exactly equal to the occurrence time tEm , but
we will see that asymptotically τEm and tEm have the same distribution (see
Lemma 4.5 below).

The advantage of working with τEm lies in the equality

{Mn ≥ m} = {
τEm ≤ (2n + 1)d

}
(2.6)

If we assume that the exponential law holds for the occurrence time, then, for all
un(x) ∈ N to be determined later on,

P (Mn ≥ un(x)) ≈ 1 − e−λEn P(Eun (x))(2n+1)d
. (2.7)

Therefore, if we can choose un(x) such that

P(Eun (x)) ≈ ane−x

(2n + 1)d
, (2.8)

then we obtain (1.5). This is the guiding idea of this paper, and the proof of a result
of the type (1.5) thus relies on the following three ingredients:
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1. Verification of the validity of the exponential law for the events En . For
this, we rely on the techniques developed in ref. (2), which requires natural
mixing conditions and a second moment estimate, see (cf. (3.9)).

2. Proof of the existence of the sequence un(x) such that (2.8) holds.
3. Proof that λEun (x) = 1 + o(1).

3. GENERAL RESULTS

In this section, we introduce the conditions needed and state the precise form
of (1.5). We start by defining the main conditions in Section 3.1, we state the
exponential law proved in ref. (2) in Section 3.2, and in Section 3.3, we state our
main results valid under the formulated conditions.

3.1. The Conditions

We need three main conditions, a non-uniformly exponentially ϕ-mixing
condition, a finite energy condition, and a condition ensuring that clusters are
subcritical or supercritical.

We first introduce the so-called “high mixing” condition which is adapted to
the case of Gibbsian random fields. For m > 0 define

ϕ(m) = sup
1

|A1|
∣∣ P

(
E A1 |E A2

) − P
(
E A1

)∣∣, (3.1)

where the supremum is taken over all finite subsets A1, A2 of Z
d , with d(A1, A2) ≥

m and over all E Ai ∈ FAi with P(E A2 ) > 0.
Note that this ϕ(m) differs from the usual ϕ-mixing function since we divide

by the size of the dependence set of the event E A1 . This is natural in the context of
Gibbsian random fields, where the classical ϕ-mixing mostly fails (except for the
simplest i.i.d. case and ad-hoc examples of independent copies of one-dimensional
Gibbs measures).

We are now ready to formulate the non-uniformly exponentially ϕ-mixing
(NUEM) condition:

Definition 3.1 (NUEM). A random field is non-uniformly exponentially
ϕ-mixing (NUEM) if there exist constants C, c > 0 such that

ϕ(m) ≤ C exp(−cm) for all m > 0. (3.2)

Examples of random field satisfying the NUEM condition are Gibbs measures
with exponentially decaying potential in the Dobrushin uniqueness regime, or local
transformations of such measures. Of course, for site percolation, where we have
independence, we have ϕ = 0.

We next define the finite energy property:
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Definition 3.2 (Finite energy property). A probability measure P has the finite
energy property if there exists δ ∈ (0, 1) such that

δ ≤ inf
ω∈�

P
(
ωx = 1|ωZd\{x}

) ≤ sup
ω∈�

P
(
ωx = 1|ωZd\{x}

) ≤ 1 − δ. (3.3)

Gibbs measures have the finite energy property (in particular, it holds of
course for independent site percolation, for which (3.3) holds with δ = 1 − δ = p),
but in general it suffices that there exists a bounded version of log P(σ0 = 1|σ{0}c ).
A direct consequence of (3.3) is the existence of C, C ′ > 0 such that for any
σ ∈ �, V ⊆ Z

d ,

e−C |V | ≤ P(ωV = σV ) ≤ e−C ′ |V |. (3.4)

Finally, we define what it means for a measure to have subcritical or supercritical
clusters:

Definition 3.3 (Sub- and supercritical clusters).

(i) The probability measure P is said to have subcritical clusters if
P(|Cle(0)| < ∞) = 1 and if there exists ζ, ξ ∈ (0,∞) such that

e−ζ ≤ lim inf
n→∞

P(|Cle(0)| ≥ n + 1)

P(|Cle(0)| ≥ n)
≤ lim sup

n→∞
P(|Cle(0)| ≥ n + 1)

P(|Cle(0)| ≥ n)
≤ e−ξ .

(3.5)
(ii) The probability measure P is said to have supercritical clusters if

P(|Cle(0)| = ∞) > 0 and if

lim
n→∞

P(n + 1 ≤ |Cle(0)| < ∞)

P(n ≤ |Cle(0)| < ∞)
= 1. (3.6)

Note that the condition in (3.5) implies that P(|Cle(0)| ≥ n) is bounded above
and below by sequences that converge to 0 exponentially. The main restriction is
that ξ < ∞ and that ζ > 0, so that we require something essentially stronger than
the trivial bounds that 0 ≤ P(|Cle(0)|≥n+1)

P(|Cle(0)|≥n) ≤ 1.

3.2. The Exponential Law

In order to have the exponential law, we need that the events En are somewhat
localized. More precisely, the non-occurrence of the event in a big cube can be
decomposed as an intersection of non-occurrence of the event in a union of
small sub-cubes separated by corridors. Then mixing can be used to factorize
the probabilities of non-occurrence in the sub-cubes, provided the corridors are
sufficiently large. Optimization of this philosophy is the content of the Iteration
Lemma in ref. (2) In our case, the events are not strictly localized but they can be
replaced by local events, without affecting limit laws. This is made precise in the
following definition:
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Definition 3.4 (Localizability).

(i) Let En be a sequence of events such that P(En) → 0. The events En

are called local with respect to ln when En ∈ Fkn , where kn is such that
kn(2n + 1)dl−θ

n → 0 for all θ > 0.
(ii) The events En satisfying P(En) → 0 are called localizable for mn ↑ ∞ if

there exist events E ′
n which are local with respect to ln = 1/P(En) such

that

lim
n→∞

∣∣P(
tE ′

n
≤ mn

) − P
(
tEn ≤ mn

)∣∣ = 0

E ′
n is then called a local version of En .

We use the following theorem which can be derived from ref. (2) as we explain
below.

Theorem 3.5 (Exponential law). Suppose P has finite energy and satisfies the
NUEM condition. Suppose further that En are localizable measurable events such
that for some δ, γ > 0 and all n ∈ N, P(En) ≤ e−γ nδ

. Assume furthermore that
for all α > 1,

lim sup
n→∞

∑
0<|x |≤nα

P(En ∩ θx En)

P(En)
< ∞. (3.7)

Then there exists �1,�2, c, ρ ∈ (0,∞), such that for all n ∈ N there exists λEn ∈
[�1,�2] such that∣∣∣∣P

(
tEn >

t

λEn P(En)

)
− e−t

∣∣∣∣ ≤ P(En)ρe−ct (3.8)

For the “local version” E ′
n , the theorem follows from [Theorem 2.6 and

Remark 2.8].(2) The extension to En is straightforward from Definition 3.4 and
is formulated in detail in [Remark 4.13].(2) Note that there is some notational
difference between the present paper and ref. (2) since, in ref. (2) the occurrence
time tEn is the width of the first cube where En occurs, whereas in our setting, it
is the volume.

Condition (3.7) is needed to apply Lemma 4.6 in ref. (2), see also ref. (1)

It ensures the existence of the lower bound �1 on the parameter λEn (which
is obtained via a second moment estimate for the number of occurrences). It
guarantees further that the parameter is bounded away from zero which means that
in a cube of volume P(En)−1, the event En happens with a probability bounded
away from zero (uniformly in n). This means that P(En)−1 is the right scale, i.e., a
cube with this volume is such that the event En happens with probability bounded
away from zero or one.
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The parameter λEn measures the “self-repetitive” nature of the event En ,
i.e., whether the event appears typically isolated or in clusters. See also(1) for one-
dimensional examples of λEn 	= 1 + o(1) and conditions ensuring λEn = 1 + o(1).
For the events En of our paper, we show that λEn = 1 + o(1) in Section 4 below.

3.3. Main Results

In our context, Condition (3.7) is satisfied as soon as for all α > 1, we have

lim sup
n→∞

∑
0<|x |<nα

P ({n ≤ |Cle(x)| < ∞} ∩ {n ≤ |Cle(0)| < ∞})
P(n ≤ |Cle(0)| < ∞)

< ∞. (3.9)

The value of α which we will need later is related to the localization of the event
|Cle(0)| > n to the event n < |Cle(0)| < nα (see the proof in Section 4 for more
details).

Now we can state our main result for the subcritical case:

Theorem 3.6 (Subcritical Gumbel law). Suppose P has finite energy, is NUEM,
has subcritical clusters and satisfies (3.9). Then there exist ξ ≤ ζ , a sequence un

with un ∈ N and un ↑ ∞ and a bounded sequence an ∈ [e−ζ , 1], such that for
x ≥ 0

e−ane−xξ − o(1) ≤ P(Mn ≤ un + x) ≤ e−ane−xζ + o(1), (3.10)

where ζ, ξ are defined in (3.5) and where the error terms may depend on x. When
x < 0, the same inequalities hold with ξ and ζ interchanged.

Moreover, if ξ = ζ , then there exists a constant ρ > 0 such that for all n ∈ N

sufficiently large,

|P (Mn ≤ un + x) − e−ane−ζ x | ≤ 1

nρ
. (3.11)

We now turn to examples where we can apply Theorem 3.6. The following
proposition yields a class of non-trivial examples:

Proposition 3.7. If P is a subcritical Markov measure satisfying the FKG in-
equality, then (3.9) is satisfied.

This gives the following applications:

1. Subcritical site percolation P = Pp where Pp is the Bernoulli measure
with Pp(ω0) = p and p < pc.

2. In d = 2: Ising model at β < βc. In general dimension, Ising model at
high temperature and/or high enough magnetic field (see ref. (18)).
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In particular, Theorem 3.6 implies Theorem 1.1, because if (1.10) holds, then
ξ = ζ .

In very general context we have (3.9) in high enough magnetic field. The
idea is that as soon as for any V , and any ω ∈ �, the conditional probabilities
PV (·|ωV c ) can be dominated by a Bernoulli measure with subcritical clusters, then
of course, for all x 	= 0,

P
(|Cle(x)| ≥ n

∣∣|Cle(0)| ≥ n
) ≤ Pp(|Cle(0)| ≥ n), (3.12)

and hence (3.9) is satisfied.
We now formulate another class of examples. We say that P is dominated by

a Bernoulli measure in the sense of Holley, when for all ω ∈ �

P(ω0 = 1|ω{0}c ) < p. (3.13)

This condition implies that P is stochastically dominated by the Bernoulli measure
Pp. For measures that are dominated by a subcritical Bernoulli measure, our results
also apply:

Proposition 3.8. Let pc denote the critical value for Bernoulli site percolation.
If (3.13) is satisfied for some p < pc, then (3.9) holds true.

This proposition can be applied to Gibbs measures such that the potential has
a Dobrushin norm which is small enough (to guarantee mixing condition), with
magnetic field high enough such that (3.13) holds, see ref. (18) for more details.

Our last theorem applies for independent supercritical site percolation. Re-
call (1.15). Then we have the following result for supercritical independent site
percolation:

Theorem 3.9 (Supercritical Gumbel law for independent site percolation).
Let p > pc and let P denote the measure of supercritical independent site per-
colation with percolation probability p. Then there exists a constant a > 0, a
sequence an ∈ (a, 1] and a sequence un(x) with un(x) ∈ N and un(x) ↑ ∞ for all
x ∈ R as n ↑ ∞, such that for all x ∈ R

Pp(Mn ≤ un(x)) = e−ane−x + o(1) (3.14)

where the error term may depend on x. If P has supercritical clusters, then
an = 1 + o(1).

Theorem 3.9 implies Theorem 1.2. Indeed, (3.6) holds if (1.14) is satisfied, and
in that case, it is easy to verify that un(x) = un + xη(1−d)/du1/d

n (1 + o(1)), where
un = un(0) ↑ ∞.
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4. PROOFS

In this section, we prove the main results stated in Sections 1 and 3.

4.1. Preparations

In this section, we state some general results for non-critical clusters. In
Proposition 4.2 and Lemma 4.3, we investigate the cluster size distribution in
more detail.

The following Lemm 4.1, identifies the law of |Cle(0)| for non-critical clusters
in terms of the law of |C(0)|. It follows immediately from (6.104) in ref. (19) in the
context of independent site percolation, but the proof applies to the more general
translation invariant setting as well.

Lemma 4.1 (The law of |Cle(0)|). For all n ≥ 1,

P(|C(0)| = n) = nP(|Cle(0)| = n). (4.1)

Before we formulate our next proposition, we remark that the cluster Cle(0)
is finite with probability one, since it has 0 as its left endpoint. Therefore, we have
P(n ≤ |Cle(0)| < ∞) = P(|Cle(0)| ≥ n) in the supercritical case, and we can drop
the restriction that the cluster is finite in the notation. Naturally, we also drop this
restriction in the subcritical case.

Proposition 4.2 (Lower bound on the cluster tail). If P has finite energy, then
there exists ζ > 0 such that

lim inf
n→∞

P(|Cle(0)| ≥ n + 1)

P(|Cle(0)| ≥ n)
≥ e−ζ . (4.2)

Proof: We start with the subcritical case. We abbreviate X = |Cle(0)|. Define
An = {X ≥ n}. We have to estimate the ratio

P(An+1)

P(An+1) + P(An\An+1)

from below, i.e., the ratio

P(An\An+1)

P(An+1)

from above. To do so, we will modify a configuration ω ∈ An\An+1 into a con-
figuration T (ω) ∈ An+1 such that only a finite number of occupancies are flipped
and such that T is at most K to one where K = 22d−1. The map T is described
as follows. Look for the “right endpoint” yω of Cle(0, ω), i.e., the largest point of
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Cle(0, ω) in the lexicographic order, and define xω = yω + (1, 0, . . . , 0). We then
define T (ω) by putting T (ω)(xω) = 1, T (ω)(z) = 0 for all neighbors of yω which
are not in Cle(0, ω), and T (ω)(x) = ω(x) for all other sites x . Clearly, the left end-
point remains unchanged in this construction, and there correspond at most 22d−1

configurations ω ∈ An\An+1 to each configuration in the image T (An\An+1).
Since T only modifies ω in a finite number of sites, by the finite energy property
of P, the ratio

0 < C2 <
P(ω | ωAc

)

P(T ω | ωAc )
< C1,

where A denotes yω and all its neighbours, is uniformly bounded away from zero
and infinity. Therefore,

P(An\An+1)

P(An+1)
≤ C122d−1

The proof of the supercritical case is the same, because the transformation T can,
from a configuration ω ∈ An\An+1, never create a configuration where the origin
is in an infinite cluster. �

Lemma 4.3 (Existence of vn). Suppose that P has finite energy. There exists a
sequence vn ∈ N with vn ↑ ∞ and a sequence bn satisfying e−ζ < bn ≤ 1 such
that

P(|Cle(0)| > vn) = bn

n
, (4.3)

where ζ is defined in (4.2). If P has supercritical clusters, then bn = 1 + o(1).

Proof: We again abbreviate X = |Cle(0)|, and recall that X < ∞ both above and
below criticality. We define

v+
n = inf

{
x ∈ N : P(X ≥ x) ≤ 1

n

}
,

v−
n = sup

{
x ∈ N : P(X ≥ x) ≥ 1

n

}
. (4.4)

Then v+
n = v−

n + 1 or v+
n = v−

n . Put vn = v+
n . By definition

P(X ≥ vn) ≤ 1

n
,

so that bn ≤ 1.
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Moreover,

nP(X ≥ vn) = nP(X ≥ v−
n )

P(X ≥ v+
n )

P(X ≥ v−
n )

≥ P(X ≥ v−
n + 1)

P(X ≥ v−
n )

. (4.5)

We note that vn ↑ ∞ when n → ∞. Therefore, by Proposition 4.2,

lim inf
n→∞ nP(X ≥ vn) ≥ lim inf

n→∞
P(X ≥ n + 1)

P(X ≥ n)
= e−ζ . (4.6)

Thus, we obtain lim infn→∞ bn ≥ e−ζ . On the other hand, by definition, if P has
supercritical clusters, then

1 ≥ lim
n→∞ nP(X ≥ vn) ≥ lim

n→∞
P(X ≥ n + 1)

P(X ≥ n)
= 1. (4.7)

Thus, we obtain limn→∞ bn = 1. �

We next verify that the events

En = {|Cle(0)| ≥ n} (4.8)

are localizable. This is the content of the next lemma.

Lemma 4.4 (Localizability of En). Suppose that P has subcritical clusters,
or that P is the measure of supercritical site percolation. Then the events En =
{|Cle(0)| ≥ n} are localizable for mn = t/P(En) and any t ≥ 0, and their local
versions can be chosen as

E ′
n = {n ≤ |Cle(0)| < nθ } (4.9)

for some θ ∈ (1,∞) with kn = nθ in Definition 3.4

Proof: Clearly, E ′
n ⊂ En and En\E ′

n ⊆ Enθ . Consequently, tE ′
n
≥ tEn and

P
(
tEn ≤ mn

) − P
(
tE ′

n
≤ mn

) = P
(
tEn ≤ mn, tE ′

n
> mn

) ≤ P
(
tEnθ ≤ mn

)
.

Clearly, we have that, with mn = t/P(En),

P
(
tEnθ ≤ mn

) ≤ (2mn + 1)d
P(Enθ ) ≤ (3t)d P(Enθ )

P(En)d
. (4.10)

The right-hand side is o(1) for any t ≥ 0 fixed by (3.5) in the subcritical case
and (1.14) in the supercritical case. The fact that E ′

n is local w.r.t. 1/P(En) with
kn = nθ is obvious. �
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We finish this section with a lemma showing the asymptotic equivalence of
τEn introduced in (2.5) and the occurrence time tEn .

More precisely, we have the following lemma:

Lemma 4.5 (Occurrence times). Let m = mn ↑ ∞ be such that mnnε−1 con-
verges to zero as n → ∞ for some ε ∈ (0, 1), and such that P(Emn ) ≤ n−d+ε ,
where, as before,

Emn = {|Cle(0)| ≥ mn}.
Then

P
(
τEmn

≤ (2n + 1)d
) = P

(
tEmn

≤ (2n + 1)d
) + o(1). (4.11)

where τEmn
tEmn

, respectively, are defined in (2.5) and (2.2), respectively.

Proof: First we remark that{
tEm ≤ (2n + 1)d

} ⊂ {
τEm ≤ (2n + 1)d

}
, (4.12)

and {
τEm ≤ (2n + 1)d

}\{tEm ≤ (2n + 1)d
}

⊆ {∃x ∈ Bn : x + Bm 	⊆ Bn, |Cle(x)| > m
}
. (4.13)

We estimate

P
({∃x ∈ Bn : x + Bmn 	⊆ Bn, |Cle(x)| > mn

})
≤ P(|Cle(0)| ≥ mn)|{x ∈ Bn : x + Bmn 	⊆ Bn}|

≤ mnnd−1

nd−ε
= mnnε−1. (4.14)

This converges to zero as n → ∞ by the assumption on mn . �

4.2. Maximal Subcritical Clusters

In this section, we prove Theorems 1.1 and 3.6. We study the tails of the
cluster size distribution, subject to (3.5). The main result is the following lemma:

Lemma 4.6 (Identification of un(x)). Suppose P has finite energy and has
subcritical clusters with ξ and ζ as in (3.5), then there exists a sequence an with
0 < an ≤ 1 such that lim infn→∞ an ≥ e−ζ , such that for all x > 0 and for all
n ≥ 1,

an

(2n + 1)d
e−ζ x (1 + o(1)) ≤ P(|Cle(0)| ≥ un + x) ≤ an

(2n + 1)d
e−ξ x (1 + o(1)),

(4.15)
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where un = v(2n+1)d with vn the sequence appearing in Lemma 4.3. For x < 0, the
same inequality holds with ζ and ξ interchanged.

Proof: Let x > 0. We again abbreviate X = |Cle(0)|. We define, using un =
v(2n+1)d ,

an = b(2n+1)d = (2n + 1)d
P(|Cle(0)| ≥ un). (4.16)

Then, the bounds on an follow from the bounds on bn in Lemma 4.3. Furthermore,

P(X ≥ un + x)

P(X ≥ un)
=

x∏
i=1

P(X ≥ un + i)

P(X ≥ un + i − 1)
. (4.17)

Hence, with the choice of un = v(2n+1)d where vn is as in Lemma 4.3, and all
x ∈ N fixed,

lim inf
n→∞

P(X ≥ un + x)

an(2n + 1)−d
≥ lim inf

n→∞

x∏
i=1

P(X ≥ un + i)

P(X ≥ un + i − 1)
≥ e−ζ x , (4.18)

so that the lower bound in (4.15) follows. For the upper bound, a similar argument
gives

lim sup
n→∞

P(X ≥ un + x)

an(2n + 1)−d
≤ lim sup

n→∞

x∏
i=1

P(X ≥ un + i)

P(X ≥ un + i − 1)
≤ e−ξ x . (4.19)

This proves the claim for x > 0. The proof for x < 0 is similar. �

We now verify Condition (3.7) for subcritical FKG measures:

Proof of Proposition 3.7: We have to prove that for any α > 0,

lim sup
n→∞

∑
0<|x |≤nα

P(|Cle(0)| ≥ n, |Cle(x)| ≥ n)

P(|Cle(0)| ≥ n)
< ∞. (4.20)

In fact, we will show that the left-hand side of (4.20) equals 0.
We denote by P

η

�(ω�) the conditional probability to find ω inside �, given
η outside �. For a Markov random field, the dependence on η is only through the
boundary of �, i.e.,

P
η

�(ω�) = P
η∂�

� (ω�), (4.21)

where ∂� denotes the exterior boundary of �, i.e., the set of those sites not
belonging to � which have at least one neighbor inside �. Thus, we can think
of η as describing the boundary condition. By the FKG-property, we have that if
η ≤ ζ for η, ζ ∈ {0, 1}Z

d
, then

P
η

� ≤ P
ζ
�. (4.22)
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Moreover, by definition of the clusters Cle(x), we have that Cle(0) ∩ Cle(x) = ∅ for
x 	= 0. Therefore, we can write, for x 	= 0,

P(|Cle(0)| ≥ n, |Cle(x)| ≥ n)

=
∑

A:|A|≥n,le(A)=0

P(Cle(0) = A, |Cle(x)| ≥ n, Cle(x) ∩ A = ∅)

=
∑

A:|A| ≥ n,le(A) = 0

P
(|Cle(x)| ≥ n, Cle(x) ∩ A =∅ |ωA = 1, ω∂ A = 0

)
P(Cle(0) = A)

=
∑

A:|A|≥n,le(A)=0

P(Cle(0) = A)P0∂ A

Zd\ Ā
(|Cle(x)| ≥ n), (4.23)

where in the last step we have used the Markov property, with the notation Ā =
A ∪ ∂ A. Using (4.22), we thus arrive at

P
0∂ A

Zd\ Ā
(n ≤ |Cle(x)| ≤ nθ ) ≤ PZd\ Ā(|C(x)| ≥ n) ≤ P(|C(x)| ≥ n). (4.24)

Equation (4.24) combined with (4.23) leads to the correlation inequality

P(|Cle(0)| ≥ n, |Cle(x)| ≥ n) ≤ P(|Cle(0)| ≥ n)P(|C(0)| ≥ n). (4.25)

Therefore,∑
0<|x |≤nα

P(|Cle(0)| ≥ n, |Cle(x)| ≥ n)

P(|Cle(0)| ≥ n)
≤ (2nα + 1)d

P(|C(0)| ≥ n) → 0, (4.26)

because the decay of the probability P(|C(0)| ≥ n) is faster than 1
nβ for all β > 0,

since P has subcritical clusters. �

Proposition 4.7 (The subcritical intensity is one). For un as in Lemma 4.6 and
for every x finite, there exists a β > 0 such that

1 − P
(
Eun+x

)β ≤ λEun+x ≤ 1. (4.27)

Proof: We will first identify λEun+x . We use [(2.6)] ref. (2), which states that

λE = − log P(tE > fE )

fEP(E)
, (4.28)

where, for some γ ∈ (0, 1),

fE = �P(E)−γ �. (4.29)

We will show that P
(
tE ≤ fE

)
is quite small (as proved in the sequel), so that we

can approximate

− log P(tE > fE ) = P(tE ≤ fE ) + O(P(tE ≤ fE )2). (4.30)
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Therefore,

λE = P(tE ≤ fE )

fEP(E)
+ o(1). (4.31)

We proceed by computing P(tE ≤ fE ). To do so, we write

P
(
tEun+x ≤ fEun+x

) = P


 ⋃

y∈Bmn,x

{|Cle(y)| ≥ un + x}

 , (4.32)

where we abbreviate mn,x = f 1/d
Eun +x

. By Boole’s inequality,

P
(
tEun+x ≤ fEun +x

) ≤
∑

y∈Bmn,x

P(|Cle(y)| ≥ un + x) = fEun+x P(Eun+x ). (4.33)

Thus,

λEun+x ≤ 1. (4.34)

For the lower bound, use

P
(
tEun+x ≤ fEun+x

) ≥
∑

y∈Bmn,x

P(|Cle(y)| ≥ un + x) (4.35)

−
∑

y,z∈Bmn,x :y 	=z

P(|Cle(y)| ≥ un + x, |Cle(z)| ≥ un + x).

The first term is identical to the first term in the upper bound, and we need to
bound the second term only. For this, we use (4.25), and thus obtain

P
(
tEun+x ≤ fEun +x

) ≥ fEun+x P
(
Eun+x

) − f 2
Eun+x

P
(
Eun+x

)
P(|C(0)| ≥ un + x).

(4.36)
Thus,

λEun+x ≥ 1 − fEun+x P(|C(0)| ≥ un + x) ≥ 1 − P
(
Eun+x

)β
(4.37)

for some β > 0. �

We finally identify the sequence un under the hypothesis of a “classical”
subcritical cluster tail behavior in Proposition 4.8, and under the hypothesis of a
“classical” supercritical cluster tail behavior in Proposition 4.12.

Proposition 4.8 (Identification un for classical subcritical tails). Suppose that
there exists α ∈ R, ζ > 0 and 0 < C < ∞, such that

P(|Cle(0)| ≥ n) = Cnαe−ζn[1 + o(1)]. (4.38)
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Then un of Lemma 4.6 can be chosen as:

un =
⌊

log n

ζ
+ α log log n

ζ

⌋
. (4.39)

Proof: This is a simple computation, using un = v(2n+1)d where vn is introduced
in Lemma 4.3. �

Proof of Theorems 3.6 and 1.1: We first finish the proof of Theorem 3.6. We use
the equality

{Mn ≥ m} = {
τEm ≤ (2n + 1)d

}
. (4.40)

Then we use Lemma 4.5 to obtain that as long as P(Emn ) ≤ n−d+ε , we have

P(Mn ≥ mn) = P
(
tEmn

≤ (2n + 1)d
) + o(1). (4.41)

We wish to apply Theorem 3.5, and will first check that the conditions are fulfilled.
We note from Lemma 4.4 that the events En are localizable for t/P(En) with local
versions E ′

n . Furthermore, from Proposition 3.7, it follows that Condition (3.7) is
fulfilled for En . Therefore, we may apply Theorem 3.5.

We choose un(x) = un + x as in Lemma 4.6, and the event Eun+x as before
in (4.8). Note that for this un(x), we indeed have that for every x fixed, and using
the bound an ≤ 1 in Lemma 4.6, to obtain

P(Eun+x ) = e−x

(2n + 1)d
an ≤ n−d+ε, (4.42)

so that we can use (4.41).
Assume that x ≥ 0. For x < 0 some inequalities reverse sign. Then we apply

Theorem 3.5 to obtain:

P(Mn ≥ un + x) = P
(
tEun+x ≤ (2n + 1)d

) + o(1)

= 1 − exp
(−λEun+x (2n + 1)d

P
(
Eun+x

)) + o(1). (4.43)

We need to investigate the exponent. By Lemma 4.6, we have that

an

(2n + 1)d
e−ζ x (1 + o(1)) ≤ P

(
Eun+x

) ≤ an

(2n + 1)d
e−ξ x (1 + o(1)), (4.44)

and this inequality is reversed for x < 0. By Proposition 4.7, we have that

λEun+x = 1 + o(1). (4.45)
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Therefore, for any x ∈ N,

1 − exp(−ane−ξ x ) + o(1) ≤ P(Mn ≥ un + x) ≤ 1 − exp(−ane−ξ x ) + o(1).

(4.46)

This completes the proof of Theorem 3.6. When ζ = ξ , the statement in
Theorem 1.1 is a direct consequence of Theorem 3.6, combined with Lemma 4.5.

�

Remark. The examples mentioned in Section 1.3.2 fit into the context of
Theorem 3.6. Indeed, for the Ising model, the inequality (3.5) is verified above
the critical temperature in d = 2 and at high enough temperature in any dimen-
sion. The mixing condition (3.2) is verified at high temperature in the Dobrushin
uniqueness regime, and in d = 2 above the critical temperature, by complete
analyticity. For general Gibbs measures with a potential with a finite Dobrushin
norm, one can choose the magnetic field high enough such that the Dobrushin
uniqueness condition and hence condition (3.2) is satisfied (see e.g., ref. (17)), and
such that (3.5) follows from a domination with Bernoulli measures
(see ref. (18)).

4.3. Maximal Supercritical Clusters

In this section we prove Theorems 3.9 and 1.2.
In the following proposition we show that we can still find a sequence un(x),

but not necessarily of the form un + x , if we omit the subcriticality condition. This
will be useful when we study the supercritical percolation clusters.

Lemma 4.9 (Existence of un(x)). Suppose P has finite energy, is NUEM and
furthermore

E(|C(0)|I [|C(0)| < ∞]) < ∞.

Then there exists a function un(x) with un(x) ∈ N, un(x) ↑ ∞ as n → ∞, for all
x ∈ R, such that

P(|Cle(0)| ≥ un(x)) = e−x

(2n + 1)d
an, (4.47)

where an ≤ 1 is a sequence for which lim infn→∞ an > 0 independent of x. Fur-
thermore, if P has supercritical clusters, then an = 1 + o(1).
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Proof: Since E(|C(0)|I [|C(0)| < ∞]) < ∞, we can use Lemma 4.1. As in the
proof of Lemma 4.3, we define

v+
n (x) = inf

{
k : P(X ≥ k) ≥ e−x

n

}
,

(4.48)

v−
n (x) = sup

{
k : P(X ≥ k) ≤ e−x

n

}
.

We can then choose un(x) = v+
(2n+1)d (x) and

an = (2n + 1)d
P(|C(0)| ≥ un(x)) ≤ 1. (4.49)

Then we can repeat the proof of Lemma 4.3 to see that lim infn→∞ an ≥ e−ζ .
Finally, we can use (3.6) to conclude that an = 1 + o(1). �

We continue with the following proposition which will guarantee Condition
(3.7) for finite supercritical clusters.

Proposition 4.10 (Supercritical second moment condition). Suppose that P

is the measure of supercritical independent site percolation. Then for every α > 1,

lim sup
n→∞

∑
0<|x |<nα

P(En ∩ θx En)

P(En)
= 0. (4.50)

Proof: Denote Ẽn = En ∩ Ec
nα . We rewrite, using that En is the disjoint union

of Ẽn and Enα ,

P(En ∩ θx En) = P(Ẽn ∩ θx Ẽn) + P(Enα ∩ θx En) + P(Ẽn ∩ θx Enα ). (4.51)

The last two terms are simple. We bound their contribution to the left-hand side
of (4.50) by

2(2nα + 1)d P(Enα )

P(En)
. (4.52)

We further compute

P(Ẽn ∩ θx Ẽn) =
∑

�1∈Gn (0)

∑
�2∈Gn (x)

P(Cle(0) = �1, Cle(x) = �2), (4.53)

where

Gn(x) = {� : x = le(�), n ≤ |�| < nα}. (4.54)
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For � ⊂ Z
d , we denote � = � ∪ ∂�. When �1 ∩ �2 = ∅, then the events {Cle(0) =

�1} and {Cle(x) = �2} are independent. We can bound this contribution to the left-
hand side of (4.53) by∑

�1∈Gn (0),�2∈Gn (x):�1∩�2=∅
P(Cle(0) = �1)P(Cle(x) = �2) ≤ P(Ẽn)2 ≤ P(En)2,

(4.55)
so that the contribution to the left-hand side of (4.50) is bounded by

(2nα + 1)d
P(En). (4.56)

We are left to deal with �1, �2 for which �1 ∩ �2 	= ∅. By construction, we
have that �1 ∩ �2 = ∅, so that there must be at least one y ∈ �1 ∩ �2 such that
y 	∈ �1 ∪ �2. Clearly, we have that y is vacant. We follow the construction in the
proof of Proposition 4.2. When we make y occupied, then we create a cluster
of size at least 2n with left endpoint 0 ∧ x , the minimum of 0 and x in the
lexicographic order. Moreover, when we also flip the occupied neighbors of y that
are not in �1 ∪ �2 to be vacant, then we guarantee that |Cle(0 ∧ x)| < 2nα ≤ (2n)α ,
and |Cle(0 ∧ x)| = 2n. This map is at most 22d−2 to one. Therefore, similarly
to the Proof of Proposition 4.2, the change in probability is at most C p,d =
22d−2(max{ 1−p

p ,
p

1−p })2d+1, so that this contribution to the left-hand side of (4.53)
is bounded by

C p,d

∑
y

∑
(�1,�2)∈Gn (0,x,y)

P(Cle(0 ∧ x) = �1 ∪ �2 ∪ {y}), (4.57)

where

Gn(0, x, y) = {(�1, �2) : �1 ∈ Gn(0), �2 ∈ Gn(x), y ∈ �1 ∩ �2}. (4.58)

Therefore, this contribution to the left-hand side of (4.53) is bounded above by

C p,d

∑
y

P(y ∈ Cle(0 ∧ x), 2n ≤ |Cle(0 ∧ x)| < (2n)α)

≤ (2n)αC p,dP(θ0∧x Ẽ2n) ≤ (2nα + 1)C p,dP(E2n), (4.59)

so that the contribution to the left-hand side of (4.50) is bounded by

C p,d (2nα + 1)d+1 P(E2n)

P(En)
. (4.60)

In particular, for every x 	= 0,

P (En ∩ θx En) ≤ C(2nα + 1)d+1[P(E2n) + P(En)2]. (4.61)
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We conclude that∑
0<|x |<nα

P(En ∩ θx En)

P(En)
≤ 2(2nα + 1)d P(Enα )

P(En)
+ (2nα + 1)d

P(En)

+ C p,d (2nα + 1)d+1 P(E2n)

P(En)
. (4.62)

By [Theorem (8.65)],(19) there exists η = η(p, d) > 0 such that

e−γ n
d−1

d ≤ P(En) ≤ P(n ≤ |C(0)| < ∞) ≤ e−ηn
d−1

d
. (4.63)

From (4.62) and (4.63), we conclude that the first two terms converge to zero,
while by (1.14), the second term also converges to zero, for every α > 1. Thus,
(4.50) follows. �

Proposition 4.11 (The supercritical intensity is one). Suppose P is the measure
of supercritical site percolation. For un(x) as in Lemma 4.9 and for every x
bounded, there exists a β > 0 such that

1 − P
(
Eun (x)

)β ≤ λEun (x) ≤ 1. (4.64)

Proof: We follow the proof of Proposition 4.7. We will first identify λEun (x) .
Recall (4.28) and (4.31). The upper bound in (4.33) applies verbatim.

For the lower bound, use

P
(
tEun (x) ≤ fEun (x)

) ≥
∑

y∈Bmn,x

P(un(x) ≤ |Cle(y)| < ∞) −
∑

y,z∈Bmn,x :y 	=z

P(un(x)

≤ |Cle(y)| < ∞, un(x) ≤ |Cle(z)| < ∞), (4.65)

where now mn,x = f 1/d
Eun (x)

. The first term is identical to the first term in the upper
bound, and we need to bound the second term only.

Using (4.61) in conjunction with (1.14), we arrive at∑
y,z∈Bmn,x :y 	=z

P(un(x) ≤ |Cle(y)| < ∞, un(x) ≤ |Cle(z)| < ∞) ≤ f 2
Eun (x)

P
(
Eun (x)

)κ

≤ [
fEun (x)P

(
Eun (x)

)]
P

(
Eun (x)

)κ−γ−1
, (4.66)

so that we arrive at the claim when κ > γ + 1 with β = κ − γ − 1. �

Finally, for supercritical clusters we expect that

P(n ≤ |Cle(0)| < ∞) = Cnαe−ηnδ

[1 + o(1)], (4.67)
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i.e., when the cluster size distribution has Weibull tails (possibly with polynomial
corrections), and with δ = d−1

d .
So far, (4.67) has not been proved rigorously, but if we assume such a tail

behavior, then we can infer the precise form of the sequence un(x) in Lemma 4.9.

Proposition 4.12 (Identification un(x) for classical supercritical tails). If
(4.67) is satisfied, then the sequence un(x) of Lemma 4.9 can be chosen of the
form

un(x) =
⌊(

log n

η
+ α log log n

ηδ
+ x

)1/δ
⌋

. (4.68)

Proof: Under the condition (4.67), it is a simple computation to verify that

P(un(x) ≤ |Cle(0)| < ∞) = e−x

(2n + 1)d
(1 + o(1)). (4.69)

�

Proof of Theorems 3.9 and 1.2: We first finish the proof of Theorem 3.9. We
follow the line of argument in the proof of Theorem 3.6. We first use (4.40). Then
we use Lemma 4.5 to obtain that as long as P(Emn ) ≤ n−d+ε , we have (4.41).

We again apply Theorem 3.5, and now check the conditions. We note from
Lemma 4.4 that the events En are localizable for mn = t/P(En) with local versions
E ′

n . Furthermore, from Proposition 4.10, it follows that Condition (3.7) is fulfilled
for En . Therefore, we may apply Theorem 3.5.

We choose un(x) as in Lemma 4.9, and the event Eun (x) as before. Note that
for this un(x), we indeed have that

P(Eun (x)) = e−x

(2n + 1)d
an ≤ n−d+ε, (4.70)

so that we can use (4.41).
Assume that x ≥ 0. For x < 0 some inequalities reverse sign. Then we apply

Theorem 3.8 to obtain:

P(Mn ≥ un(x)) = P
(
tEun (x) ≤ (2n + 1)d

) + o(1)

= 1 − exp
(−λEun (x) (2n + 1)d

P
(
Eun (x)

)) + o(1). (4.71)

We need to investigate the exponent. By Lemma 4.6, we have that

P
(
Eun (x)

) = an

(2n + 1)d
e−x . (4.72)
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By Proposition 4.11, we have that

λEun (x) = 1 + o(1). (4.73)

Therefore, for any x ,

P(Mn ≥ un(x)) = 1 − exp(−ane−x ) + o(1). (4.74)

This completes the proof of Theorem 3.9.
If we further assume that P has supercritical clusters, then by Lemma 4.9

we can take an = 1 + o(1). For Theorem 1.2, we note that the further assumption
(1.14) implies that P has supercritical clusters, and that we can choose un(x) =
�un + xu1/d

n �, where un = un(0). Hence, we obtain that

P
(
Eun (x)

) = P
(
Eun

) P

(
Eun+xu1/d

n

)
P

(
Eun

) = P
(
Eun

)
e−xη d−1

d [1 + o(1)]

= (2nU )−de−xη d−1
d [1 + o(1)]. (4.75)

The conclusion then follows from (4.74). �

4.4. Proof of Theorems 1.3, 1.4 and 1.5

Proof of Theorems 1.3 and 1.4: We will prove Theorems 1.3 and 1.4 simultane-
ously. In order to do so, we let δ = 1 for p < pc and δ = d−1

d for p > pc. We then
assume that

− lim
n→∞

1

nδ
log P(|C(0)| ≥ n) = ξ (4.76)

exists. The main ingredient is the following lemma:

Lemma 4.13 (Convergence in probability). For any ε > 0, there exists κ > 0
such that as n → ∞,

P

(∣∣∣∣ Mn

(log n)1/δ
− C

∣∣∣∣ > ε

)
≤ n−κ , (4.77)

where C = dζ for p < pc and C = d
d−1

d η for p > pc.

Before proving Lemma 4.13, we will complete the proofs of Theorems 1.3
and 1.4 subject to Lemma 4.13.

Take nk = 2k . As a consequence of Lemma 4.13, and the fact that for every
κ > 0,

n−κ
k = 2−κk
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is summable in k, we obtain that
Mnk

(log(nk ))1/δ converges to C a.s. Thus, we have a.s.
convergence along the subsequence (nk)k≥0. Moreover, we have that a.s. n �→ Mn

is non-decreasing. Therefore, for any nk < n ≤ nk+1 we can bound

Mnk

(log(nk))1/δ

(
log(nk)

log(nk+1)

)1/δ

≤ Mn

(log n)1/δ
≤ Mnk+1

(log(nk+1))1/δ

(
log(nk+1)

log(nk)

)1/δ

.

(4.78)

As n → ∞, also nk, nk+1 → ∞. Thus,
Mnk

(log(nk ))1/δ and
Mnk+1

(log(nk+1))1/δ converge a.s. to
C . Furthermore,

lim
k→∞

log(nk+1)

log(nk)
= lim

k→∞
k + 1

k
= 1, (4.79)

so that both upper and lower bound in (4.78) converge to C almost surely. This
completes the proofs of Theorems 1.3 and 1.4. �

Proof of Lemma 4.13: Let C be the constant such that

P

( |C(0)|
(log n)1/δ

> C

)
= n−d(1+o(1)), (4.80)

This constant exists by (1.8) in the case p < pc, and by assumption (1.13) (proved
in d = 2, 3) for p > pc. With this choice of C , for ε > 0, there exists a κ ′ ∈ (0, d)
such that

P

( |C(0)|
(log n)1/δ

> C + ε

)
≤ n−d−κ ′

, (4.81)

while

P

( |C(0)|
(log n)1/δ

< C − ε

)
≤ 1 − n−d+κ ′

. (4.82)

Fix ε > 0. We will prove

P

( Mn

(log n)1/δ
> C + ε

)
≤ n−κ , (4.83)

and

P

( Mn

(log n)1/δ
< C − ε

)
≤ n−κ . (4.84)
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To prove (4.83), we use that

P

( Mn

(log n)1/δ
> C + ε

)
= P


 ⋃

x∈Bn

{|C(x)| > (C + ε)(log n)1/δ}



≤
∑
x∈Bn

P(|C(0)| > (C + ε)(log n)1/δ)

≤ |Bn|n−d−κ ′ ≤ n−κ , (4.85)

where we use (4.81).
To prove (4.84), we use that the events {|C(x)| ≤ (C + ε)(log n)1/δ}x∈An are

independent when

An = (KnZ)d ∩ Bn. (4.86)

and

Kn = �(C + ε)(log n)1/δ� (4.87)

Therefore,

P

( Mn

(log n)1/δ
< C − ε

)
= P


 ⋂

x∈An

{|C(x)| ≤ (C − ε)(log n)1/δ}



=
∏

x∈An

P(|C(x)| < (C − ε)(log n)1/δ)

≤ P(|C(0)| < (C − ε)(log n)1/δ)|An |. (4.88)

We next use (4.82) and the fact that

|An| ≥
(

n

�(C + ε)(log n)1/δ�
)d

, (4.89)

so arrive at a bound, for every κ ∈ (0, κ ′),

P

( Mn

(log n)1/δ
< C − ε

)
≤ (1 − n−d+κ ′

)|An | ≤ n−κ , (4.90)

which completes the proof. �

Proof of Theorem 1.5: We again use (4.80) together with the observation that the
events {M(zb)

n 	= M(fb)
n } and {M(zb)

n 	= M(pb)
n } are contained in the event that there

exists a cluster on the boundary (either with free or periodic boundary conditions)
such that there exists an x ∈ ∂ Bn such that |C(x)| ≥ M(zb)

n . By Theorems 1.3
and 1.4, we have that M(zb)

n ≥ (C − ε)(log n)1/δ a.s. By (4.80) and when ε > 0 is
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sufficiently small, this probability is thus bounded above by

nd−1
P(|C(x)| ≥ (C − ε)(log n)1/δ) ≤ n−κ

for some κ > 0. �
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